

(a) Describe fully a single transformation which maps both

(i)	A onto C and B onto D,	[2]
(ii)	A onto D and B onto C ,	[2]
(iii)	A onto P and B onto Q.	[3]

(b)	Describe fully a single transformation which maps triangle <i>0AB</i> onto triangle <i>JFE</i> .	[2]
------------	--	-----

(c) The matrix **M** is $\begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$.

	(i)	Describe the transformation which M represents.	[2]
	(ii)	Write down the co-ordinates of P after transformation by matrix \mathbf{M} .	[2]
(d)	(i)	Write down the matrix R which represents a rotation by 90° anticlockwise about 0 .	[2]
	(ii)	Write down the letter representing the new position of F after the transformation $\mathbf{RM}(F)$.	[2]

(a) Describe fully the single transformation which maps

	(i)	shape A onto shape B ,	[2]
	(ii)	shape B onto shape C ,	[2]
	(iii)	shape A onto shape D,	[2]
	(iv)	shape B onto shape E,	[2]
	(v)	shape B onto shape F,	[2]
	(vi)	shape A onto shape G .	[2]
(b)	A tı	ransformation is represented by the matrix $\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$.	
	Wh	ich shape above is the image of shape A after this transformation?	[2]
(c)	Fin	d the 2 by 2 matrix representing the transformation which maps	
	(i)	shape <i>B</i> onto shape <i>D</i> ,	[2]
	(ii)	shape A onto shape G.	[2]

- (a) Describe fully the single transformation which maps
- (i) triangle X onto triangle P, [2] (ii) triangle X onto triangle Q, [2] (iii) triangle X onto triangle R, [3] [3] (iv) triangle X onto triangle S. (b) Find the 2 by 2 matrix which represents the transformation that maps [2]

[2]

- (i) triangle X onto triangle Q,
- (ii) triangle X onto triangle \tilde{S} .

Transformation M is reflection in the line y = x.

(a) The point *A* has co-ordinates (2, 1).

Find the co-ordinates of

(i) T(A), [1]

(ii)
$$MT(A)$$
. [2]

[2]

[2]

- (b) Find the 2 by 2 matrix **M**, which represents the transformation M.
- (c) Show that, for any value of k, the point Q(k-2, k-3) maps onto a point on the line y = x following the transformation TM(Q). [3]
- (d) Find M^{-1} , the inverse of the matrix M.

(e) N is the matrix such that
$$\mathbf{N} + \begin{pmatrix} 0 & 3 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 4 \\ 0 & 0 \end{pmatrix}$$
.

- (i) Write down the matrix N. [2]
- (ii) Describe completely the single transformation represented by N. [3]

(a)	Draw and label x and y axes from -6 to 6, using a scale of 1 cm to 1 unit.	[1]
------------	--	-----

(b) Draw triangle
$$ABC$$
 with $A(2,1), B(3,3)$ and $C(5,1)$. [1]

- (c) Draw the reflection of triangle *ABC* in the line y = x. Label this $A_1B_1C_1$. [2]
- (d) Rotate triangle $A_1B_1C_1$ about (0,0) through 90° anti-clockwise. Label this $A_2B_2C_2$. [2]
- (e) Describe fully the single transformation which maps triangle ABC onto triangle $A_2B_2C_2$. [2]
- (f) A transformation is represented by the matrix $\begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix}$.
 - (i) Draw the image of triangle *ABC* under this transformation. Label this $A_3B_3C_3$. [3]
 - (ii) Describe fully the single transformation represented by the matrix $\begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix}$. [2]
 - (iii) Find the matrix which represents the transformation that maps triangle $A_3B_3C_3$ onto triangle *ABC*. [2]

(a) On the grid, draw the enlargement of the triangle *T*, centre (0, 0), scale factor $\frac{1}{2}$. [2]

Fo Exami Us **(b)** The matrix $\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$ represents a transformation.

(i) Calculate the matrix product
$$\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 8 & 8 & 2 \\ 4 & 8 & 8 \end{pmatrix}$$
.

	ii) On the grid, draw the image of the triangle <i>T</i> under this transformation.	[2]
	iii) Describe fully this single transformation.	
	Answer(b)(iii)	[2]
(c)	Describe fully the single transformation which maps	
	i) triangle T onto triangle P,	
	Answer(c)(i)	[2]
	ii) triangle T onto triangle Q.	
	Answer(c)(ii)	[3]

(d) Find the 2 by 2 matrix which represents the transformation in part (c)(ii).

Fo Exam Us

Use

Answer the whole of this question on a sheet of graph paper.

(a)	Usin _8 ≤	ng a scale of 1 cm to represent 1 unit on each axis, draw an x-axis for $-6 \le x \le 10$ and a $y \le y \le 8$	axis for
	Cop Mai	by the word EXAM onto your grid so that it is exactly as it is in the diagram above. It is the point P (6,6).	[2]
(b)	Dra	w accurately the following transformations.	
	(i)	Reflect the letter \mathbf{E} in the line $x = 0$.	[2]
	(ii)	Enlarge the letter X by scale factor 3 about centre P (6,6).	[2]
	(iii)	Rotate the letter A 90° anticlockwise about the origin.	[2]
	(iv)	Stretch the letter \mathbf{M} vertically with scale factor 2 and x-axis invariant.	[2]
(c)	(i)	Mark and label the point Q so that $\overrightarrow{PQ} = \begin{pmatrix} -3 \\ 2 \end{pmatrix}$.	[1]
	(ii)	Calculate $ \overrightarrow{PQ} $ correct to two decimal places.	[2]
	(iii)	Mark and label the point S so that $\overrightarrow{PS} \begin{pmatrix} -4 \\ -1 \end{pmatrix}$.	[1]
	(iv)	Mark and label the point R so that PQRS is a parallelogram.	[1]

Use one of the letters A, B, C, D, E or F to answer the following questions.

- (i) Which triangle is T mapped onto by a translation? Write down the translation vector. [2]
- (ii) Which triangle is *T* mapped onto by a **reflection**? Write down the equation of the mirror line. [2]
- (iii) Which triangle is *T* mapped onto by a **rotation**? Write down the coordinates of the centre of rotation. [2]
- (iv) Which triangle is *T* mapped onto by a stretch with the *x*-axis invariant?Write down the scale factor of the stretch. [2]

[2]

(v)
$$\mathbf{M} = \begin{pmatrix} 1 & 4 \\ 0 & 1 \end{pmatrix}$$
. Which triangle is *T* mapped onto by **M**?

Write down the name of this transformation.

(b)
$$\mathbf{P} = \begin{pmatrix} 1 & 3 \\ 5 & 7 \end{pmatrix}, \quad \mathbf{Q} = (-1 & -2), \quad \mathbf{R} = (1 & 2 & 3), \quad \mathbf{S} = \begin{pmatrix} -1 \\ 2 \\ 3 \end{pmatrix}.$$

Only some of the following matrix operations are possible with matrices **P**, **Q**, **R** and **S** above.

$$\mathbf{PQ}, \qquad \mathbf{QP}, \qquad \mathbf{P} + \mathbf{Q}, \qquad \mathbf{PR}, \qquad \mathbf{RS}$$

Write down and calculate each matrix operation that is possible. [6]

4 Answer the whole of this question on a sheet of graph paper.

(a) Draw x- and y-axes from -8 to 8 using a scale of 1cm to 1 unit. Draw triangle ABC with A (2, 2), B (5, 2) and C (5, 4).	[2]
(b) Draw the image of triangle <i>ABC</i> under a translation of $\begin{pmatrix} -9\\ 3 \end{pmatrix}$.	
Label it $A_1B_1C_1$.	[2]
(c) Draw the image of triangle <i>ABC</i> under a reflection in the line $y = -1$. Label it $A_2B_2C_2$.	[2]
(d) Draw the image of triangle <i>ABC</i> under an enlargement, scale factor 2, centre (6,0). Label it $A_3B_3C_3$.	[2]
(e) The matrix $\begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$ represents a transformation.	
(i) Draw the image of triangle ABC under this transformation. Label it $A_4B_4C_4$.	[2]
(ii) Describe fully this single transformation.	[2]
(f) (i) Draw the image of triangle <i>ABC</i> under a stretch, factor 1.5, with the <i>y</i> -axis invariant. Label it $A_5B_5C_5$.	[2]
(ii) Find the 2 by 2 matrix which represents this transformation.	[2]
7 Answer the whole of this question on a sheet of graph paper.	
(a) Draw x and y axes from 0 to 12 using a scale of 1 cm to 1 unit on each axis.	[1]
(b) Draw and label triangle T with vertices $(8, 6)$, $(6, 10)$ and $(10, 12)$.	[1]
(c) Triangle <i>T</i> is reflected in the line $y = x$.	
(i) Draw the image of triangle <i>T</i> . Label this image <i>P</i> .	[2]
(ii) Write down the matrix which represents this reflection.	[2]
(d) A transformation is represented by the matrix $\begin{pmatrix} \frac{1}{2} & 0\\ 0 & \frac{1}{2} \end{pmatrix}$	
(i) Draw the image of triangle T under this transformation. Label this image Q .	[2]
(ii) Describe fully this single transformation.	[3]
(e) Triangle <i>T</i> is stretched with the <i>y</i> -axis invariant and a stretch factor of $\frac{1}{2}$.	
Draw the image of triangle T. Label this image R.	[2]

The diagram shows triangles P, Q, R, S, T and U.

(a) Describe fully the single transformation which maps triangle

	(i)	T onto P,	[2]
	(ii)	Q onto T ,	[2]
	(iii)	T onto R ,	[2]
	(iv)	T onto S,	[3]
	(v)	U onto Q.	[3]
(b)	Fine	I the 2 by 2 matrix representing the transformation which maps triangle	
	(i)	T onto R,	[2]
	(ii)	U onto Q .	[2]

(a) Describe fully the **single** transformation which maps

(i) triangle T onto triangle U,

Answer(a)(i) [2]

(ii) triangle T onto triangle V,

Answer(a)(ii) [3]

2

For Examiner's

Use

(iii) triangle T onto triangle W, Answer(a)(iii) [3] (iv) triangle U onto triangle X. Answer(a)(iv) [3] (b) Find the matrix representing the transformation which maps (i) triangle U onto triangle V, [2] Answer(b)(i) (ii) triangle U onto triangle X. [2] Answer(b)(ii)

For Examiner's Use

For Examiner's Use

For Examiner's Use

where *n* is a positive integer and $\binom{n}{r} = \frac{n!}{(n-r)!r!}$.