
(a) Describe fully a single transformation which maps both
(i) A onto C and B onto D,
(ii) A onto D and B onto C,
(iii) A onto P and B onto Q.
(b) Describe fully a single transformation which maps triangle $O A B$ onto triangle $J F E$.
(c) The matrix \mathbf{M} is $\left(\begin{array}{rr}0 & -1 \\ -1 & 0\end{array}\right)$.
(i) Describe the transformation which \mathbf{M} represents.
(ii) Write down the co-ordinates of P after transformation by matrix \mathbf{M}.
(d) (i) Write down the matrix \mathbf{R} which represents a rotation by 90° anticlockwise about 0 .
(ii) Write down the letter representing the new position of F after the transformation $\mathbf{R M}(F)$.

(a) Describe fully the single transformation which maps
(i) shape A onto shape B,
(ii) shape B onto shape C,
(iii) shape A onto shape D ,
(iv) shape B onto shape E,
(v) shape B onto shape F,
(vi) shape A onto shape G.
(b) A transformation is represented by the matrix $\left(\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right)$.

Which shape above is the image of shape A after this transformation?
(c) Find the 2 by 2 matrix representing the transformation which maps
(i) shape B onto shape D,
(ii) shape A onto shape G.

(a) Describe fully the single transformation which maps
(i) triangle X onto triangle P,
(ii) triangle X onto triangle Q,
(iii) triangle X onto triangle R,
(iv) triangle X onto triangle S.
(b) Find the 2 by 2 matrix which represents the transformation that maps
(i) triangle X onto triangle Q,
(ii) triangle X onto triangle S.

Transformation M is reflection in the line $y=x$.
(a) The point A has co-ordinates $(2,1)$.

Find the co-ordinates of
(i) $\mathrm{T}(A)$,
(ii) $\operatorname{MT}(A)$.
(b) Find the 2 by 2 matrix \mathbf{M}, which represents the transformation M.
(c) Show that, for any value of k, the point $Q(k-2, k-3)$ maps onto a point on the line $y=x$ following the transformation $\mathrm{TM}(Q)$.
(d) Find \mathbf{M}^{-1}, the inverse of the matrix \mathbf{M}.
(e) \mathbf{N} is the matrix such that $\mathbf{N}+\left(\begin{array}{ll}0 & 3 \\ 1 & 0\end{array}\right)=\left(\begin{array}{ll}0 & 4 \\ 0 & 0\end{array}\right)$.
(i) Write down the matrix \mathbf{N}.
(ii) Describe completely the single transformation represented by \mathbf{N}.
(a) Draw and label x and y axes from -6 to 6 , using a scale of 1 cm to 1 unit.
(b) Draw triangle $A B C$ with $A(2,1), B(3,3)$ and $C(5,1)$.
(c) Draw the reflection of triangle $A B C$ in the line $y=x$. Label this $A_{1} B_{1} C_{1}$.
(d) Rotate triangle $\boldsymbol{A}_{1} \boldsymbol{B}_{1} \boldsymbol{C}_{\mathbf{1}}$ about $(0,0)$ through 90° anti-clockwise. Label this $A_{2} B_{2} C_{2}$.
(e) Describe fully the single transformation which maps triangle $A B C$ onto triangle $A_{2} B_{2} C_{2}$.
(f) A transformation is represented by the matrix $\left(\begin{array}{rr}1 & 0 \\ -1 & 1\end{array}\right)$.
(i) Draw the image of triangle $A B C$ under this transformation. Label this $A_{3} B_{3} C_{3}$.
(ii) Describe fully the single transformation represented by the matrix $\left(\begin{array}{rr}1 & 0 \\ -1 & 1\end{array}\right)$.
(iii) Find the matrix which represents the transformation that maps triangle $A_{3} B_{3} C_{3}$ onto triangle $A B C$.

(a) On the grid, draw the enlargement of the triangle T, centre $(0,0)$, scale factor $\frac{1}{2}$.
(b) The matrix $\left(\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right)$ represents a transformation.
(i) Calculate the matrix product $\left(\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right)\left(\begin{array}{ccc}8 & 8 & 2 \\ 4 & 8 & 8\end{array}\right)$.

> Answer(b)(i)
(ii) On the grid, draw the image of the triangle T under this transformation.
(iii) Describe fully this single transformation.

Answer(b)(iii)
(c) Describe fully the single transformation which maps
(i) triangle T onto triangle P,

Answer(c)(i)
(ii) triangle T onto triangle Q.

Answer(c)(ii)
(d) Find the 2 by 2 matrix which represents the transformation in part (c)(ii).

(a) On the grid, draw
(i) the translation of triangle T by the vector $\binom{-7}{3}$,
(ii) the rotation of triangle T about $(0,0)$, through 90° clockwise.
(b) Describe fully the single transformation that maps
(i) triangle T onto triangle U,

Answer(b)(i)
(ii) triangle T onto triangle V.

(a) Draw the reflection of triangle T in the line $y=6$.

Label the image A.
(b) Draw the translation of triangle T by the vector $\binom{-4}{6}$. Label the image B.

Answer the whole of this question on a sheet of graph paper.
(a) Using a scale of 1 cm to represent 1 unit on each axis, draw an x-axis for $-6 \leqslant x \leqslant 10$ and a y-axis for $-8 \leqslant y \leqslant 8$.
Copy the word EXAM onto your grid so that it is exactly as it is in the diagram above.
Mark the point $P(6,6)$.
(b) Draw accurately the following transformations.
(i) Reflect the letter \mathbf{E} in the line $x=0$.
(ii) Enlarge the letter \mathbf{X} by scale factor 3 about centre $P(6,6)$.
(iii) Rotate the letter $\mathbf{A} 90^{\circ}$ anticlockwise about the origin.
(iv) Stretch the letter \mathbf{M} vertically with scale factor 2 and x-axis invariant.
(c) (i) Mark and label the point Q so that $\overrightarrow{P Q}=\binom{-3}{2}$.
(ii) Calculate $|\overrightarrow{P Q}|$ correct to two decimal places.
(iii) Mark and label the point S so that $\overrightarrow{P S}\binom{-4}{-1}$.
(iv) Mark and label the point R so that $P Q R S$ is a parallelogram.

7

Use one of the letters A, B, C, D, E or F to answer the following questions.
(i) Which triangle is T mapped onto by a translation? Write down the translation vector.
(ii) Which triangle is T mapped onto by a reflection? Write down the equation of the mirror line.
(iii) Which triangle is T mapped onto by a rotation? Write down the coordinates of the centre of rotation.
(iv) Which triangle is T mapped onto by a stretch with the x-axis invariant?

Write down the scale factor of the stretch.
(v) $\mathbf{M}=\left(\begin{array}{ll}1 & 4 \\ 0 & 1\end{array}\right) . \quad$ Which triangle is T mapped onto by \mathbf{M} ?

Write down the name of this transformation.
(b) $\mathbf{P}=\left(\begin{array}{ll}1 & 3 \\ 5 & 7\end{array}\right), \quad \mathbf{Q}=\left(\begin{array}{ll}-1 & -2\end{array}\right), \quad \mathbf{R}=\left(\begin{array}{lll}1 & 2 & 3\end{array}\right), \quad \mathbf{S}=\left(\begin{array}{r}-1 \\ 2 \\ 3\end{array}\right)$.

Only some of the following matrix operations are possible with matrices $\mathbf{P}, \mathbf{Q}, \mathbf{R}$ and \mathbf{S} above.
$\mathbf{P Q}, \quad \mathbf{Q P}, \quad \mathbf{P}+\mathbf{Q}, \quad \mathbf{P R}, \quad \mathbf{R S}$
Write down and calculate each matrix operation that is possible.

4 Answer the whole of this question on a sheet of graph paper.
(a) Draw x - and y-axes from -8 to 8 using a scale of 1 cm to 1 unit. Draw triangle $A B C$ with $A(2,2), B(5,2)$ and $C(5,4)$.
(b) Draw the image of triangle $A B C$ under a translation of $\binom{-9}{3}$. Label it $\quad A_{1} B_{1} C_{1}$.
(c) Draw the image of triangle $A B C$ under a reflection in the line $y=-1$. Label it $A_{2} B_{2} C_{2}$.
(d) Draw the image of triangle $A B C$ under an enlargement, scale factor 2 , centre $(6,0)$. Label it $A_{3} B_{3} C_{3}$.
(e) The matrix $\left(\begin{array}{rr}0 & -1 \\ -1 & 0\end{array}\right)$ represents a transformation.
(i) Draw the image of triangle $A B C$ under this transformation. Label it $A_{4} B_{4} C_{4}$.
(ii) Describe fully this single transformation.
(f) (i) Draw the image of triangle $A B C$ under a stretch, factor 1.5, with the y-axis invariant. Label it $A_{5} B_{5} C_{5}$.
(ii) Find the 2 by 2 matrix which represents this transformation.

7 Answer the whole of this question on a sheet of graph paper.
(a) Draw x and y axes from 0 to 12 using a scale of 1 cm to 1 unit on each axis.
(b) Draw and label triangle T with vertices $(8,6),(6,10)$ and $(10,12)$.
(c) Triangle T is reflected in the line $y=x$.
(i) Draw the image of triangle T. Label this image P.
(ii) Write down the matrix which represents this reflection.
(d) A transformation is represented by the matrix $\left(\begin{array}{ll}\frac{1}{2} & 0 \\ 0 & \frac{1}{2}\end{array}\right)$
(i) Draw the image of triangle T under this transformation. Label this image Q.
(ii) Describe fully this single transformation.
(e) Triangle T is stretched with the y-axis invariant and a stretch factor of $\frac{1}{2}$.

Draw the image of triangle T. Label this image R.

The diagram shows triangles P, Q, R, S, T and U.
(a) Describe fully the single transformation which maps triangle
(i) T onto P,
(ii) Q onto T,
(iii) T onto R,
(iv) T onto S,
(v) U onto Q.
(b) Find the 2 by 2 matrix representing the transformation which maps triangle
(i) T onto R,
(ii) U onto Q.
(iii) triangle T onto triangle W,

Answer(a)(iii)
(iv) triangle U onto triangle X.

Answer(a)(iv)
(b) Find the matrix representing the transformation which maps
(i) triangle U onto triangle V,

[2]
(ii) triangle U onto triangle X.

(i) Draw the image when triangle A is reflected in the line $y=0$.

Label the image B.
(ii) Draw the image when triangle A is rotated through 90° anticlockwise about the origin.

Label the image C.
(iii) Describe fully the single transformation which maps triangle B onto triangle C.

Answer(a)(iii)
(b) Rotation through 90° anticlockwise about the origin is represented by the matrix $\mathbf{M}=\left(\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right)$.
(i) Find \mathbf{M}^{-1}, the inverse of matrix \mathbf{M}.

$$
\operatorname{Answer}(b)(\mathrm{i}) \mathbf{M}^{-1}=(
$$

(ii) Describe fully the single transformation represented by the matrix \mathbf{M}^{-1}.

8 (a)

Draw the images of the following transformations on the grid above.
(i) Translation of triangle A by the vector $\binom{3}{-7}$. Label the image B.
(ii) Reflection of triangle A in the line $x=3$. Label the image C.
(iii) Rotation of triangle A through 90° anticlockwise around the point $(0,0)$. Label the image D.
(iv) Enlargement of triangle A by scale factor -4 , with centre $(0,1)$. Label the image E.
where n is a positive integer and $(r)=\frac{n!}{(n-r)!r!}$.

